2

京都大学·理学研究科附属 花山·飛騨天文台

一本 潔、 協力:上野 悟

太陽研究最前線体験ツアー 2010.8.17-20

一本 潔 (いちもと きよし)

略歷: 昭和51年3月 大阪府立茨木高等学校卒業 昭和56年3月 京都大学理学部卒業 昭和58年3月 京都大学大学院理学研究科宇宙物理学専門課程博士課程修了 昭和05年3月 原和入学大学院理学研究科于由物理学専门課程博工課程修了 昭和62年5月1日東京大学東京天文台助手 平成8年1月1日文部科学省国立天文台助教授 平成16年4月1日大学共同利用機関法人·自然科学研究機構国立天文台准教授 平成20年4月1日京都大学大学院理学研究科教授

專門:

3

- オー 太陽の光学観測(太陽黒点、コロナ) 、偏光分光プラズマ診断、装置開発

関わったプロジェクト: 飛騨天文台、ひので可視光望遠鏡、乗鞍コロナ観測所、 国立天文台三鷹望遠鏡、皆既日食遠征(チリ、トルコ、、、)

内容:

1. いろいろな光で見た太陽 光に含まれる情報 光の種類とスペクトル
太陽スペクトル 2. スペクトルのでき方 連続光の形成 線スペクトルの形成
太陽の周辺滅光 太陽の大気構造 原子スペクトルの偏光とプラズマ診断 3. 光を読みとる観測装置 空間を分解する望遠鏡 シーイングと補償光受系
次長を分解する分光装置 偏光を分解する倫光解析装置 世界の太陽望遠鏡 4. 京都大学理・附属天文台でできる観測研究 太陽の研究課題 装置開発のブロジェクト
5. まとめ

1. いろいろな光で見た太陽

なぜ光の種類によって見え方が異なるのか?

・物質は温度によって異なる波長の光を出すから

・光の波長によって透明度が異なるから

・偏光:光をつくる領域に異方性があるから

光がどうやってつくられ伝わるかを理解することが、 「天体物理学」の出発点!

11

光に含まれる情報

天体の素性を説くための手がかりは光(電磁波)によってもたらされる

光に含まれる情報とは、、、 → 強度 / の種々な次元に対する依存性

強度	$I(x,y,t,\lambda,p)$	 温度、密度	
依存性	x, y 方向	 空間構造	
	t 時間	 ダイナミクス	
	λ 波長	 運動、温度、密度、z方向空間構造、	•
	p 偏光	 ベクトル的物理量	

(磁場、電場、輻射場の異方性、、、)

光の種類とスペクトル

フラウンホーファー線

1814、ドイツの物理学者 <u>ヨゼフ・フォン・フラウンホーファー</u>

			f
A線	0,	759.370 nm	
B線	0,	686.719	
C線	Hα	656.281	
D ₁ 線	Na	589.594	
D ₂ 線	Na	588.997	
D₃線	He	587.565	
E₂線	Fe	527.039	
F線	Нβ	486.134	
G線	Fe	430.790	
H線	Ca+	396.847	
K線	Ca+	393.368	

19

◆太陽可視光スペクトルと吸収線

太陽可視光域のスペクトル写真(撮影:飛騨天文台、岡山天体観測所)

2. スペクトルのでき方

Hα線

MM

300 250

原子状態と線スペクトル

原子の線スペクトル ←→ 2つのエネルギーレベル間の状態遷移

24

スペクトルがどうやって作られるか

→ Radiative Transfer (輻射輸送)の問題

スペクトルがどうやって作られるか → Radiative Transfer (輻射輸送)の問題

$$\frac{dI_{\nu}}{k_{\nu}ds} = -I_{\nu} + \frac{j_{\nu}}{k_{\nu}} \qquad \substack{k_{\nu}ds \to d\tau_{\nu} \\ \frac{j_{\nu}}{k_{\nu} \to S_{\nu} \sim B(T)}} \text{: source function (源泉関数)} \\ \mathbf{輻射輸送の式} \qquad \boxed{\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}} \\ \mathbf{fr}: I_{\nu}(\tau_{\nu}) = -e^{\tau_{\nu}} \int_{\infty}^{\tau_{\nu}} S_{\nu}e^{-t}dt \qquad \mathbf{Eostambell} \tau < \delta \mathcal{K} \\ \overline{\tau_{\nu} = 0} \qquad \boxed{I_{\nu} = \int_{\infty}^{0} S_{\nu}(s)e^{-\tau_{\nu}}k_{\nu}ds} \\ 30$$

吸収線のでき方:2つの考え方

太陽の大気構造

35

スペクトル線の偏光

Zeeman効果の発見

The Effect of Magnetisation on the Nature of Light Emitted by a Substance P. Zeeman, *Nature*, vol. 55, 11 February 1897, pg. 347

偏光の記述: Stokes パラメータの定義

Zeeman 効果

磁場によってスペクトル線が分離(Δλ ~ B). 分離した各コンポーネントが偏光。

30

Intensity and polarization of Zeeman components

Intensity and polarization of Zeeman components

ゼーマン効果

Intensity and polarization of Zeeman components

Intensity and polarization of Zeeman components

Intensity and polarization of Zeeman components

ゼーマン効果

Intensity and polarization of Zeeman components

ゼーマン効果

Intensity and polarization of Zeeman components

Fel6301 5A Fel6302 5A g = 1.67 g = 2.5 ひので、教科書には、、、

原子線の偏光メカニズム 磁場によってのコンポーネントのZeeman 分離がおこり、線は偏光する。 M= 0 M= +1 M= -; .l=1 量子化軸 コンポーネントの 波長分離 J=0, m=0 ζ Q Zeeman 効果 λ v 51

原子線の偏光メカニズム

非等方的な輻射場や粒子速度場による光 / 衝突励起によって、サプレベル間の分布 の偏り(アライメント)が生じる。

原子線の偏光メカニズム

原子線の偏光メカニズム ^{電場,或いは、磁場の中の衝突によって、サブレベル間の分布の偏り(オリエンテー ション)が生じる。}

偏光メカニズムとプラズマ診断量

偏光の起源 = 太陽プラズマの空間的異方性 偏光の情報 → ベクトル物理量の診断が可能

偏光メカニズム	診断量
Zeeman 効果	ベクトル磁場
Paschen-Back効果	
Stark 効果	電場、電子密度
衝突偏光	熱伝導、粒子ビーム
散乱	連続光コロナの分離(Thomson)
Hanle 効果	弱い磁場、(プラズマ密度)
禁制遷移散乱	コロナ磁場(方向)、(プラズマ密度)
	偏光メカニズム Zeeman 効果 Paschen-Back効果 Stark 効果 衝突偏光 散乱 Hanle 効果 薬制遷移散乱

未開拓領域

これはなんだ!?

CaH プロミネンス

= 100万度のコロナに 浮かんだ低温の雲

質量~ 10 億トン 速度~100 km/秒

地球 直径~13000km

高さ=g t²/2=10⁵km 重力 g=28G=274m/s² ◆落下時間 t~14min

55

57

光に含まれる情報

天体の素性を説くための手がかりは光(電磁波)によってもたらされる

光に含まれる	情報とは	‡	、	
→	強度 /	&	種々の次元に対する依存性	

強度	/(x,y,t,λ,p)	 温度、密度
依存性	x,y方向	 空間構造

t 時間 ---- ダイナミクス

- **λ 波長** ── 運動、温度、密度、z方向空間構造、、
- 偏光 --- ベクトル的物理量 D

(磁場、電場、輻射場の異方性、、、) 58

Point Spread Function (口径50cm 理想) 6 1.0 1,0 ο,ε ٥., 0.1 0.1 0. 0.1 0.4 о. ο. ۵,:

3. 光を読みとる観測装置

スリット上の位置

狭帯域カトロナブれガラルター

波長を分解する分光装置

狭帯域チューナブルフィルター

Lyot filter vs. Fabry Perot

Tunable filter FPP/SOT

Air space Foster etal 2009 Optical Society of America

LiNbO3 Schuhle etal 2009(?) 67

Fabry-Perot 干渉計の原理

偏光を分解する偏光解析装置

This polarimeter requires that the spectrometer and the detector have same throughput and sensitivity for all polarization states.

 \rightarrow This is not the case in real devices.

74

Polarization

(PMU)

modulator unit

year

2009

1961

2010?

2002

1996 1969

1989

1979

11.

2

2017?

Collimator

lens unit

(CLU)

偏光を分解する偏光解析装置

A better polarimeter-1 (rotating waveplate)

世界の太陽望遠鏡

X線, EUV領域、連続観測, 高安定度 Hinode 2006.9~ SDO (Solar Dynamic Observatory) 2010-太陽観測衛星「ひので」 2006.9 太陽全面画像(EUV+光球磁場・光球速度場) 4kx4k 大量データ 日本の太陽コミュニティー

太陽観測の動向: スペース

STEREO 2006.10 ~ EUV imager + Coronagraph x 2 spacecraft

太陽観測の動向: 地上観測 空間分解能、取得情報量、測光精度の追求

追求	ATST (Hawaii)	4	open, off-axis
BBSO	EST (Canary Island)	4?	open
	NST (BigBear)	1.6	open, off-axis
-	McMath (KitPeak)	1.6	heliostat
	GREGOR (Tenerife)	1.5	open
	COSMO (Hawaii)	1.5	coronagraph
	### (China)	1.0	vacuum
	SST (LaPalma)	1.0	vacuum
51 A A A A A A A A A A A A A A A A A A A	THEMIS (Tenerife)	0.9	helium
	DST (SacPeak)	0.75	vacuum

VTT (Tenerife)

DST (Hida)

0.6 大口径プロジェクトはいずれも回折限界を狙う ATST~0.03"! 視野が狭い。 弱点:

0.7

よい画像の得られる時間は小口径望遠鏡よりも少ない。 マシンタイムの取合い、実験的観測をしづらい。

地上大型望遠鏡プロジェクト

SOT/Hinode polarimeter

ота

HDM <u>(</u> М2 CTM-TM 8 M 1 Pupil image Astigmatism M1 corrector lens (ACL) Π NFI- Polarization Mech. Mask wheel Reimaging lens FG-CCD FG/NFI Non-polarizing beam splitter Blocking filter wheel Slit scan SP SP- Polariza analvzer (beam 76 splitter) SP-CCD left/right

type

vacuum

vacuum

73

計面

4. 京都大学理·附属天文台 でできる観測研究

79

偏光較正裝置 → 入射窓 第1斜鏡 - 地上23m グレゴリー副鏡 → 主鏡 第2斜鏡 (クーデ鏡) 像を安定化し解像度回復 望遠鏡より 塔盤 冷却パネル 補償光学装置 **僵光解析装置-2** 焦点面 補信光学装置 直安計 り替えミラー 波面センサー 水平分光器へ 1 水平式分光器室 4 - 12 コンピューター室 /焦重 可变形状鏡 偏光解析装置-1 ¥ 重直分光器へ 地表面 anda

高精度偏光分光観測を実現するためDSTを補強

DST広帯域ポラリメータ

- 広い波長領域(380-1600nm)、多波長同時
- 2偏光同時撮像
- 連続読み出し·加算により S/N > 10³
- AO によるシーイングノイズ低減、解像度向上

ドームレス望遠鏡の機械偏光測定

ドームレス太陽望遠鏡

多波長偏光分光による新しいプラズマ診断の開拓

ゼーマン効果	→	光球、プロミネンス磁場			
散乱偏光、ハンレ効果	→	彩層・コロナ弱磁場			
シュタルク効果	→	彩層・コロナの電場			
衝突偏光	→	粒子ビーム、熱伝導			
原子の偏向と輻射過程の基礎研究					
→ 天体磁気プラズマの基礎過程を真に理解する					

SMART望遠鏡の開発

SMART望遠鏡の展開

京都大学理・附属天文台でできる観測研究

- ドームレス望遠鏡やひのでを使った観測研究 (太陽による宇宙プラズマの基礎物理に挑戦)
- SMART望遠鏡やCHAINによる宇宙天気研究 (フレア、質量放出、太陽活動周期の予報に挑戦)
- 他の国内・海外施設を使った観測研究
- ドームレス望遠鏡やSMARTの装置開発、実験 (偏光、像安定化装置、高精度磁場撮像、etc.)
- 次期太陽観測衛星(Solar-C)計画への参加 (装置設計、宇宙用基礎実験、、)

5. まとめ

太陽の謎解きには、

- ・光がどうして作られるか、
 (輻射輸送、量子力学、熱力学、統計力学、相対論)
- 光をどうやって測定するか、
 (光学、電子工学、機械工学、体力)
- データをどう解釈するか、
 (電磁流体力学、熱力学、プラズマ理論、シミュレーション)

全部必要! → 得意な分野を生かして活躍できます。

90