太陽を調べる光の目

京都大学·理学研究科附属 飛騨天文台

一本 潔、 協力:上野 悟

太陽研究最前線体験ツアー 2018.3.19 - 23 いちもと きょし 一本 潔 (大阪茨木高校出身)

京大·理·附属天文台飛騨/国立天文台·Solar-C準備室

略歴:

1987.4 京大宇宙物理·天文台卒業

1987.5 国立天文台勤務;

乗鞍コロナ観測所、日食遠征、ひので、、

2008.4~ 京大理·附属天文台

研究内容: 太陽観測(黒点、コロナ、フレア、) 飛騨の装置開発、観測 次期太陽観測衛星Solar-Cの推進

太陽を調べる光の目 内容:

- O. イントロ「飛騨天文台」、「宇宙の測りかた」
- 1. 太陽のみえ方
 - 光に含まれる情報
 - 光の種類とスペクトル
 - 太陽スペクトル
- 2. スペクトルのでき方
 - 連続光の形成
 - 線スペクトルの形成
 - 太陽の周辺減光と大気構造
- 3. 宇宙の中の「磁場」
 - 宇宙における磁場の働き
- 4. 磁場を測る
 - 偏光とゼーマン効果
- 5. 光を読みとる観測装置
 - 空間を分解する望遠鏡、シーイング
 - 波長を分解する分光装置
 - 偏光を分解する偏光解析装置
 - 世界の太陽望遠鏡
- 6. 京都大学理・附属天文台ですすめている観測研究 飛騨天文台のとりくむ観測プロジェクト

イントロ: 宇宙の測りかた

(飛騨天文台一般公開用スライド)

太陽や月の「大きさ」はどのくらい?

もちろん本当の大きさじゃない!

宇宙を計る道具

望遠鏡

分光器

人工衛星

pixta.jp - 4499800

望遠鏡は高精度の分度器!?

望遠鏡が遠くのものを見分ける能力 = 「分解能」

大きさ _	光の波長
距離	望遠鏡の口径

口径	1 mm	100km 先の	50 m	(高層ビル)緑の光で
"	4.5 cm	"	1 m	(机)
"	20 cm	"	25 cm	(ラーメンの器)
"	60 cm	"	8 cm	(チャーシュー)

" 5 m " 1 cm (ネギ)

分光器は温度計!?

物体の温度と色

スペクトルのどこが明るいかで温度が分かる!

分光器はスピード計!?

ドップラー効果・・・

スペクトルに混ざった黒い線 – 星の元素の痕跡

飛騨天文台の2つの太陽望遠鏡

SMART望遠鏡 太陽全体を常に観測

ドームレス太陽望遠鏡 世界屈指の分光器

スペクトル

これらをつかって 太陽の大きさを測ってみよう。

まずSMART望遠鏡

太陽の自転周期を測る

太陽は約27日で1回転

つぎにドームレス望遠鏡

スペクトル線のずれ(ドップラー効果;スピードガンの原理)から、 太陽の赤道表面は2km/sの速度で回っていることがわかる。

太陽の大きさは?

太陽の1周 =2km/秒 x 27日 =2x60x60x24x27 =470万km

太陽の直径=1周/3.14(円周率)~150万km

・・ 地球の約110倍

太陽はどのくらい離れているのか?

太陽の見かけの大きさ~2m先の1円玉(直径2cm)

太陽までの距離 = 2m x 150万km/2cm =1億5千万km(=1天文単位)

星の距離の測り方

ある星は周囲の星に対して ねんしゅうしさ 半年ごとに位置がずれる(年周視差)。

きっと手前にあるに違いない! このみかけのずれから星までの距離 が分かる。

=地球の公転軌道を用いた三角測量

そこまでいかずに距離を測る方法

三角測量: 2つの地点から見こむ角度を測って距離を求 める

年周視差で距離がわかった星

太陽からいちばん近い星: αケンタウリの年周視差 = 0.74秒角 (1秒角 = 1°の1/3600 = ここからみた乗鞍岳山頂のリンゴの大きさ) αケンタウリまでの距離は 26万天文単位=39兆km

現在の「分度器」の最高精度~0.001秒角 (ヒッパルコス衛星) (ここからみた京都にあるゴマ粒(1mm)の大きさ)

年周視差から距離が分かった星~約12万個

しかし、その背景(遠く)にはまだ無数の星がある!

太陽の重さ(質量)はどうしてわかる?

地球は太陽から1億5000万km 離れ たところを1年かけて回っている

これは太陽が地球を引きつけるから遠心力万有引力

$$M_E L \omega^2 = F(\vec{\beta} \mid \mathcal{I}) = \frac{G M_o M_E}{L^2}$$

物体の質量と引力の関係Gを測る実 験(キャベンディッシュの実験) これから太陽の質量が求まる!

太陽

力

L = 1AU

太陽の重さと半径がわかると。。

$$F_{g} = \frac{GM_{o}}{R_{o}^{2}}m = ma, \qquad R_{o} = 7.0 \times 10^{8} m$$

 $a = \frac{GM_o}{R_o^2} = \frac{6.7 \times 10^{-11} \times 2.0 \times 10^{30}}{(7 \times 10^8)^2} \sim 270 \text{ m/s}^2 \sim 28G$

太陽の寿命は?

1億5000万km 離れたところで太陽の光の エネルギーは1.4kW/1平方m(太陽定数)

太陽は四方八方同じだけ光を出しているだろうから、 太陽が1秒間に放つ全エネルギーは ~ 4 x 10²⁶ J/s [W]

太陽の燃料が石油だったとしたら・・・ 太陽は500万年で燃え尽きてしまう。

太陽の燃料は水素の核融合反応であることがわかった・・・

→ 太陽の寿命は約100億年(今45億歳)

1. 太陽のみえ方

2つの異なる連続光で見た太陽

1999/10/30

Hα線(水素原子のスペクトル線)で見た太陽 (彩層=1万度:光球の上層大気)

2003年10月30日 京大飛騨天文台 SMART望遠鏡

Hαの異なる波長で観た太陽

Solar Magnetic Activity Research Telescope "SMART" at Hida Observatory, Kyoto University

2003年10月30日 MDI 磁場

なぜ光の種類によって見え方が異なるのか?

・物質は温度によって異なる波長の光を出すから 光の波長によって異なる温度のものが見える

 ・光の波長によって透明度が異なるから 波長によって見通す深さが異なる

・光源や媒質に「異方性」があると光が「偏る」から 磁場などのベクトル物理量の違いが見える

光がどうやってつくられ伝わるかを理解することが、 「天体物理学」の出発点!

光に含まれる情報

宇宙のことを知りたい! その手がかりは光(電磁波)によってもたらされる

光に含まれる情報とは、、、 → 強度 / の種々な次元に対する依存性

強度 *I*(x, y, t, λ, p) --- 温度、密度
依存性 x, y 方向 --- 空間構造

- t 時間 ---- ダイナミクス
- **λ 波長 --- 運動、温度、密度、z方向空間構造、、**

p 偏光 --- ベクトル的物理量

(磁場、電場、輻射場の異方性、、、)₃₄

光の種類とスペクトル

いろいろな光とスペクトル

京都大学用朝天文台で運営された太陽スペクトル

This image was later by a Horizonial Spectrograph of the Dometers Edur Telescope (DST) of Hits Observatory, Castusia Educat of Eduron, Kaola University, JAPAN

光は、空にかかる虹のように、赤から葉までの芭に分けることができます。 ニュートンは、私たちが自にする光が、いろいろな芭の光が混ざったものである ことを萌らかにしました。光は波の性質をもっていることがわかっていますが、 いちばん波萇の長い光が赤、短い光が葉になります。 自で見える券と業の光の外側にも、自には見えない光が来ていることが発覚 され、赤外線、衆外線と名づけられました。その後、電波も同じ仲間であること がわかり、これらの「光」は合わせて電磁波、自に見える光は可視光とよばれる ようになりました。又線、ガンマ線も同じ「光」の仲間です。

名古屋科学館

太陽スペクトル

http://en.wikipedia.org/wiki/Solar_radiation

A線	0 ₂	759.370 nm
B線	0 ₂	686.719
C線	Ηα	656.281
D ₁ 線	Na	589.594
D ₂ 線	Na	588.997
D ₃ 線	He	587.565
E ₂ 線	Fe	527.039
F線	Нβ	486.134
G線	Fe	430.790
H線	Ca+	396.847
K線	Ca+	393.368
◆太陽可視光スペクトルと吸収線

太陽可視光域のスペクトル写真(撮影:飛騨天文台、岡山天体観測所)

2. スペクトルのでき方

原子状態と線スペクトル

原子の線スペクトル ←→ 2つのエネルギーレベル間の状態遷移

輝線スペクトルと吸収線スペクトル

<u>http://www.kasaoka.okayama-c.ed.jp/kyoumu/kokusai/kokusai312a.htm</u> 美星天文台提供

実は光の種類によって「周辺増光」もある。 いろいろな光で太陽の輝度分布を調べると、大気の高さ構造が分かる。

太陽の大気構造

46

3. 宇宙の中の「磁場」

宇宙における磁場の働き(1):

- プラズマの運動を抑制・ガイド

$$r_L = \frac{\upsilon cm}{eB} = \frac{2c}{eB} \sqrt{\frac{kmT}{3}} << L$$

→「構造」の形成(対流の抑制、プラズマ閉じこめ)

宇宙における磁場の働き(2):

- 磁気圧による膨張
$$P = Pg + \frac{B^2}{8\pi}$$

→ 磁気ループの浮上、コロナへの拡大

ひので

TRACE

宇宙における磁場の働き(3):

- 波動の媒体 $\rho \frac{Dv}{Dt} = -\nabla P - \nabla \left(\frac{B^2}{8\pi} \right) + \frac{1}{4\pi} (\mathbf{B} \cdot \nabla) \mathbf{B}$ 圧力 張力
 - → エネルギーや擾乱の伝達

宇宙における磁場の働き(5):

- エネルギーの蓄積・不安定化 $\varepsilon \approx \frac{1}{2}Lj^2$, L: inductance of magnetic loop

→ 突発的な状態遷移(爆発・噴出現象)

フレア

磁場は多様な「活動」現象の担い手

太陽研究の課題1 磁場の散逸機構

ひのでSOT ムービー by 勝川

太陽研究の課題2

磁場の生成機構(ダイナモ)

(11年活動サイクル、マウンダー極小期、)

- スペクトル線の偏光を生成(変更) → それ自身の測定を可能とする!

磁場が作るスペクトル線の偏光

4. 磁場を測る

スペクトル線の偏光

Zeeman効果の発見

The Effect of Magnetisation on the Nature of Light Emitted by a Substance P. Zeeman, *Nature,* vol. 55, 11 February 1897, pg. 347

Zeeman 効果

磁場によってスペクトル線が分離($\Delta \lambda \sim B$). 分離した各コンポーネントが偏光。

横Zeeman 効果 (磁場と直角方向からみて)

Description of polarized light

animation courtesy of Jose Carlos del Toro Iniesta

偏光の記述; Stokes パラメータの定義

黒点磁場の発見(1908年、ヘール) 太陽可視光域のスペクトル写真

鉄の原子がつくる線スペクトル

Zeeman effect of spectral line (SOT/Spectro-polarimeter)

Fel6301.5A Fel6302.5A g = 1.67 g = 2.5

Stokes profiles: Zeeman effect

Suntpot magnetic field

Field strength

Field inclination

0 ~ 4000 Gauss

-90° ~ +90°

磁場の $\mathfrak{A} \Rightarrow$ 電流: $J_z \sim \operatorname{rot} \mathbf{B}$

Stokes profiles: Zeeman effect

Doppler shift

6301.0

6301.5

-2 ~ +3 km/sec

SP4D20061211_142622.8C; iy=0430, NCP= -9.60mA $\eta_{\rm p}$ = 98.7, $\Delta\lambda_{\rm p}$ = 0.017, o=1.330, B=2459, y= 44, χ = 27, f=0.78

6302.5

6303.0

6302.0

しかし・・・スペクトルの偏光は ゼーマン効果と磁場だけではない!

偏光の起源 = 太陽プラズマの空間的異方性偏光の情報 → ベクトル物理量の診断が可能

偏光メカニズムとプラズマ診断量

異方性の原因	偏光メカニズム	診断量
磁場	Zeeman 効果	ベクトル磁場
	Paschen-Back効果	
電場	Stark 効果	電場、電子密度
粒子速度場	衝突偏光	熱伝導、粒子ビーム
輻射場	散乱	連続光コロナの分離(Thomson)
輻射+磁場	Hanle 効果	弱い磁場、(プラズマ密度)
	禁制遷移散乱	コロナ磁場(方向)、(プラズマ密度)

線スペクトルの偏光メカニズム

準位分裂: Zeeman効果、Paschen-Back効果、Stark効果 分布偏り: 散乱偏光、Hanle効果、衝突偏光、、、、

ベクトル物理量の診断 🗲 偏光分光観測

これはなんだ!?

CaH プロミネンス

= 100万度のコロナに 浮かんだ低温の雲

質量~ 10 億トン 速度 > 20 km/秒

> **地球** 直径~13000km

高さ = g t²/2 = 10⁵km 重力 g = 28G = 274m/s² → 落下時間 t~14min

駆動力 = $J \times B \dots$ 但し、BもJもまだ測られてない。。 中性水素原子の感じる電場 = $v \times B \rightarrow x \rho \mu \rho$ 効果で見えるはず!⁷⁸

5. 光を読みとる観測装置

光に含まれる情報

天体の素性を説くための手がかりは光(電磁波)によってもたらされる

光に含まれる情報とは、、、 → 強度 / & 種々の次元に対する依存性

強度 *I*(x, y, t, λ, p) --- 温度、密度

依存性 x, y 方向 --- 空間構造

- t 時間 ---- ダイナミクス
- λ 波長 --- 運動、温度、密度、z方向空間構造、、
- p 偏光 --- ベクトル的物理量

(磁場、電場、輻射場の異方性、、、)

Point Spread Function (口径50cm 理想)

波長を分解する分光装置

スペクトロヘリオグラムの説明

データキューブ

狭帯域カトロケリオノグラルター

狭帯域チューナブルフィルター

Lyot filter vs. Fabry Perot

Tunable filter FPP/SOT

Air space Foster etal 2009 Optical Society of America LiNbO3 Schuhle etal 2009(?)

分光器

A better polarimeter-1 (rotating waveplate)

世界の太陽望遠鏡

太陽観測の動向: 地上観測 空間分解能、取得情報量、測光精度の追求

GREGOR @Tenerife (1.5m)

NVST @Fuxian lake (1.0m)

DST @SacPeak

(0.75m)

SST @LaPalma (1.0m)

NST @BBSO (1.6m)

DKIST @Hawaii 4mø

世界の地上大型望遠鏡

Name (site)	D(m)	type	year
ATST (Hawaii, US)	4	open, off-axis	2019
EST (Canary Island)	4?	open	?
### (India)	2	open	?
NST (BigBear, US)	1.6	open, off-axis	2009
McMath (KitPeak, US)	1.6	heliostat	1961
GREGOR (Tenerife, Spa)	1.5	open	2011
COSMO (Hawaii)	1.5	coronagraph	?
NVST [Fuxian, China)	1.0	vacuum	2012
SST (LaPalma, Spa)	1.0	vacuum	2002
THEMIS (Tenerife, Spa)	0.9	helium	1996
DST (SacPeak, US)	0.75	vacuum	1969
VTT (Tenerife, Spa)	0.7	vacuum	1989
DST (Hida, Japan)	0.6	vacuum	1979

飛騨DSTの特徴

- 高い汎用性を持った分光器
- 特徴ある焦点面観測装置

60cm の回折限界分解能の撮像は当たり前の時代になってきた。

太陽観測の動向: スペース

X線, EUV領域、連続観測, 高安定度

Hinode 2006.9 ~

STEREO 2006.10 ~ EUV imager + Coronagraph x 2 spacecraft SDO (Solar Dynamic Observatory) 2010~

太陽全面画像(EUV+光球磁場・光球速度場) 4kx4k 大量データ

IRIS 2013~

紫外線分光撮像 による彩層・遷移 領域の観測

6. 京都大学理·附属天文台 でできる観測研究

飛騨天文台で開発されたユニークな観測装置

2015~

•DST 広帯域偏光分光装置

2015~

•DST 補償光学装置

2016~

・SMART フィラメント放出速度場撮像装置

2014~

・SMART 高感度ベクトルマグネトグラフ

2011~

- •SMART 連続光/Hα高速フレア撮像装置 2010~
- ・宇宙(Solar-C)用狭帯域リオフィルター

2011~

・シーイングモニター

DST 2013.6.25

430nm ORCA4 1ms expo.x100

天体観測の 天敵= シーイング

ドームレス望遠鏡 2013.6.25

430nm ORCA4 1ms expo.x100枚

回折限界分解能 ~0.2秒角 ~120km

平均画像 1秒露出の画像

シーイングとは、、

十分遠くにある観測対象天 対象天体 球面波 体から出てくる光は,対流 圏まではほぼ平面波 平面波 対流圏内では、大気の乱流による 地球対流图 温度分布の揺らぎが生じ、それに 空気中の屈折率揺 より屈折率揺らぎが生じている 地上で観測する際には、対象 天体からの光はゆがんだ波面 として見え、それが時間変動 観測者 像の位置揺らぎ、ぼやけ、 ((★)) チレーションなど Slide by T.Kawate

より高解像度を目指して・・

リアルタイムで波面のゆらぎを補正 → Adaptive optics 開発中

→ スペックルマスキング 最近開発

DST新補償 光学装置の 光学系

R

Usable for both V and H spectrographs All mirror system 97elem. deformable mirror 1500Hz control, now in final tuning..

DST新補償光学装置の光学系

00:45004500450045:08 Start Time (26-Sep-17 00:45:00)

LISUONZ CONTROL, NOW ITTINAL tuning..

スペックルマスキングによる 画像復元プログラム

Lohmann, Weigelt, and Wirnitzer, 1983, App. Opt., 22, 4028 Pehlemann and von der Luhe, 1989, AA, 216, 337

spemirh

一本&川手 2014, 京都大学大学院理学研究科附属天文台技報 Vol. 2-1

フーリエ空間における振幅と移送の復元

DST 2013.6.25

430nm ORCA4 1ms expo.x100

r₀ ~ 38mm

w=128pix

DST 2013.6.25

430nm ORCA4 1ms expo.x100

Speckle masking + Deconvolution (max_likelihood)

2013.5.14 X flare

狭帯域チューナブルフィルター(UTF-32)

狭帯域チューナブルフィルター(UTF-32)

•	開口	32 x 32mm
•	透過幅	0.25A @Ha
•	波長範囲	500nm – 1100nm
•	波長制御	液晶遅延素子
•	応答時間	~0.1sec
•	2波長同時	+0.5A @Ha

Dopplergram, I(Ha+0.5A) - I(Ha-0.5A)

Dual camera ($\Delta t=0s$)

Single camera ($\Delta t=1.5s$)

キャリブレーション用データ観測手法

- ・ 観測室から無線で操作し、既知の偏光をDSTに入射
- $(I,Q,U,V) = (1,0,0,0), (1,\pm 1,0,0), (1,0,\pm 1,0)$

DST入射窓

製作:仲谷、他

8/14

マスクの下で8つの直線偏光板と 8つの穴がある回転板が回る

Oscillation in sunspot chromosphere

SOT/Hinoda

DST polarimeter

ドームレス太陽望遠鏡

多波長偏光分光による新しいプラズマ診断の開拓

ゼーマン効果 → 光球、プロミネンス磁場
散乱偏光、ハンレ効果 → 彩層・コロナ弱磁場
シュタルク効果 → 彩層・コロナの電場
衝突偏光 → 粒子ビーム、熱伝導
原子の偏向と輻射過程の基礎研究

→ 天体磁気プラズマの基礎過程を真に理解する

SMART system

フィラメント"消失"とCME

R L

乗鞍コロナ観測所

CMEの70%以上がフィラメント"消 失"に伴っている(Munro etal 1979)

15 のフィラメント消失のうち、噴出 型8イベントはすべてCME を伴い、 「準」噴出型7イベントはすべて CMEを伴わなかった。(Morimoto and Kurokawa 2003)

Cクラスの~70%, Mクラスの~44%, X クラスの~10% は CMEを伴わない (Yashiro etal, 2005)

消失フィラメントの速度場をモニターすることがCMEの発生を いち早く予測するための有効な手段となり得る。

2014-09-02 11:10:19 UT SDO/AIA 304 Å

噴出のHαスペクトル

Hida DST 2014.11.11

Hlpha 656.3nm

Solar Dynamics Doppler imager on SMART $H\alpha$ +9A (-410~+410km/s, 73点), $\Delta t = 15$ sec

波長スキャン画像

 $2016.08.05 \ 08:55:17 - 08:55:31 \ (JST)$
Example; fulldisk image and Dopplergram

2016.05.21 01:19:24

I(-0.5) - I(0.5)

C5.1 flare and filament eruption at NOAA 12561

-8.0Aでもみえる(SDDI 現在までの最速イベント)

-6Aや-8Aでみえてるところ = -2A以下ではみえない =>これまでの観測ではまったくわからないところ

SMART T4 magnetograph

are the function of wave plate

SMART T4 vector magnetograph

Intensity

Polarization modulation

2012.05.14 6302.5 - 0.07A

by S. Morita, S.Nagata

2017.09.04-05のNOAA12673の光球磁場の発達の様子

4つの双極磁場(A-D)からなり、二つの顕著な磁気浮上領域の境界の中性線の発達が 巨大フレアに関係していると考えられる

SMART望遠鏡の展開

1日24時間太陽活動を監視 する国際共同プロジェクト

本計画で実現する3つの拠点 •飛騨天文台(日本)、 •イカ大学(ペルー)、 •新教育天文台(アルジェリア)

フレア監視望遠鏡

太陽面爆発によるプラズマの噴出速度と 方向を測定。太陽地球間環境変動に与え る影響を研究する。

京都大学理・附属天文台でできる観測研究

- ドームレス望遠鏡やひのでを使った観測研究 (太陽による宇宙プラズマの基礎物理過程の探求)
- SMART望遠鏡やCHAINによる宇宙天気研究 (フレア、質量放出、太陽活動周期の予報に挑戦)
- 他の国内・海外施設を使った観測研究
- ドームレス望遠鏡やSMARTの装置開発、実験 (偏光、像安定化装置、高精度磁場撮像、etc.)
- 次期太陽観測衛星(Solar-C)計画への参加 (装置設計、宇宙用基礎実験、、)

7.まとめ

太陽の謎解きには、

・光がどうして作られるか、
(輻射輸送、量子力学、熱力学、統計力学、相対論)

・光をどうやって測定するか、
(光学、電子工学、機械工学、体力)

・データをどう解釈するか、

(電磁流体力学、熱力学、プラズマ理論、シミュレーション)

全部必要! → 得意な分野を生かして活躍できます

おわり