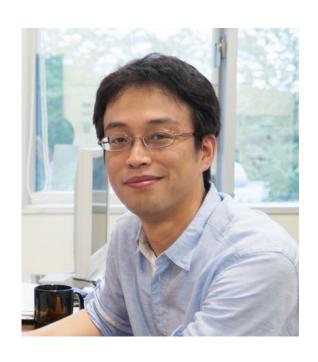

国立天文台での太陽研究

勝川行雄


国立天文台 太陽観測科学プロジェクト

東京大学・理学系研究科天文学専攻総研大・天文科学専攻

自己紹介

- 国立天文台・太陽観測科学プロジェクトで仕事をしています
- 最先端の観測データを使って太陽活動の研究をしています
- 人工衛星「ひので」
 - 太陽を観測する最先端の人工衛星
 - JAXA/ISASを中心とした国際協力で開発
 - 2006年9月23日に打ち上げ、15年経った今も観測しています
- 岐阜県恵那市の出身です

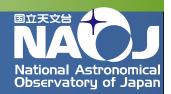
国立天文台での観測・研究設備

すばる望遠鏡 ハワイにある8m望遠鏡

アルマ望遠鏡 (12m/7mのパラボラアンテナ66台) 南アメリカ・チリにある電波望遠鏡

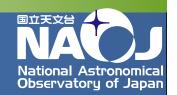
スーパーコンピュータ

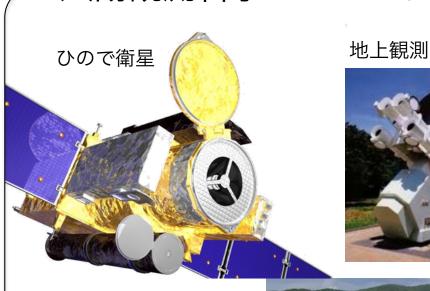
最先端の観測装置をつくる


KAGRA: 重力波望遠鏡

TMT: thirty-meter telescope (ハワイ)

国立天文台の施設


三鷹キャンパス

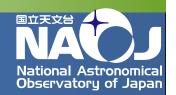


国立天文台パンフレットより

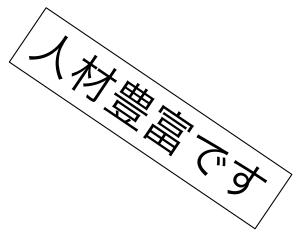
国立天文台における太陽研究

太陽観測科学プロジェクト

ロケット、気球観測


SOLAR-Cプロジェクト

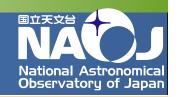
ALMAプロジェクト

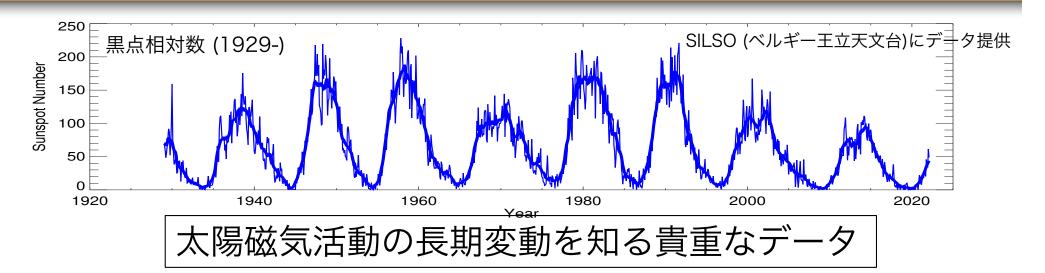


国立天文台の太陽研究者

(2022年3月現在)

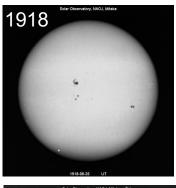
- 「太陽観測科学プロジェクト」「SOLAR-Cプロジェクト」「ALMAプロジェクト」
 - 教授: 原
 - 准教授: 石川,下条,関井,花岡,勝川
 - 助教: 岡本, 久保, 成影
 - 国立天文台フェロー: Benomar
 - 研究員: 大場, 川畑, 松本
 - 学振研究員: 八田, 行方 (庄田, 2月まで)
 - 大学院生: 5名 (総研大 3, 東大 2)

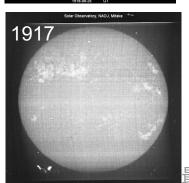



多様なニーズに応えます!!

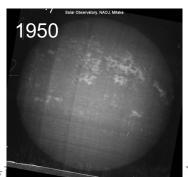
- いろんなデータを使った研究をやりたい
 - 地上~衛星、電波~X線、自前~他の装置
- 人工衛星を運用してみたい
 - ひのでの運用だけでなく、IRIS(NASAの衛星)を運用している人も います
- 自分で観測装置を作りたい
- 大きなプロジェクトで仕事がしたい
 - ロケット・気球実験
 - Solar-C衛星
- 太陽以外の天文宇宙研究にも興味がある

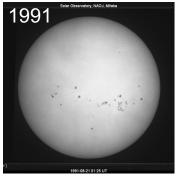
国立天文台における太陽観測

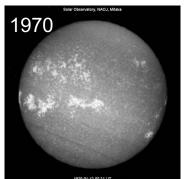


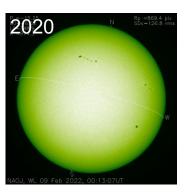

白色光 (1918-)

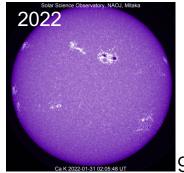
黒点スケッチ (1938-1998)

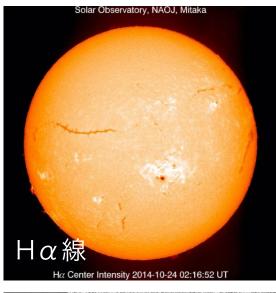

Ca II K線 (1917-1974) (2015-)

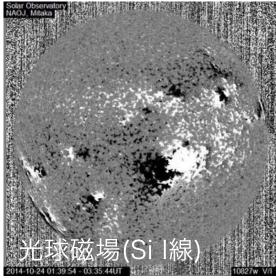

Ηα線

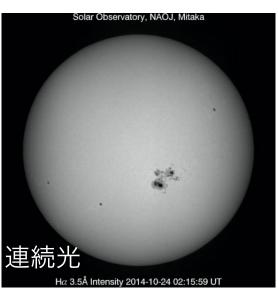


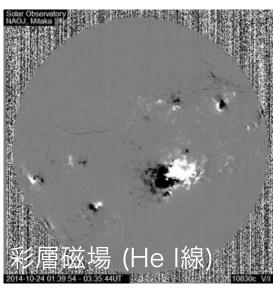




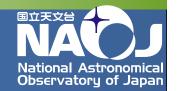


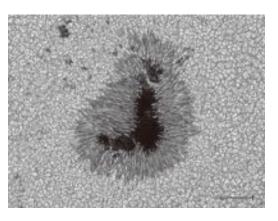

国立天文台での太陽観測: 磁場観測

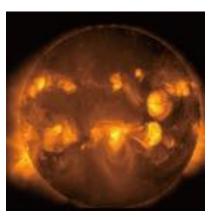


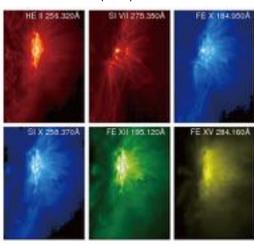


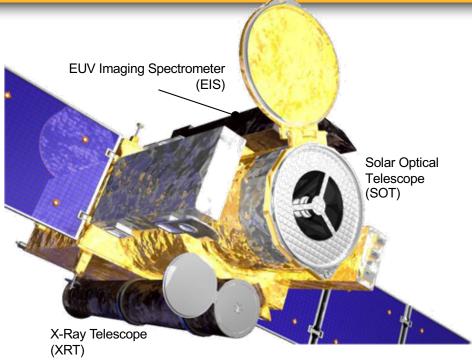
太陽フレア望遠鏡@三鷹

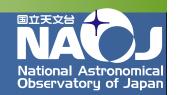


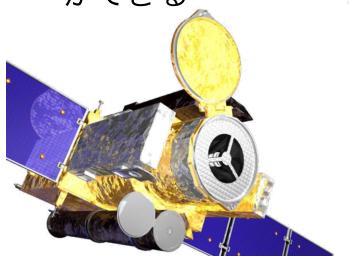




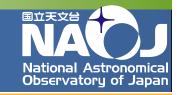

「ひので」衛星

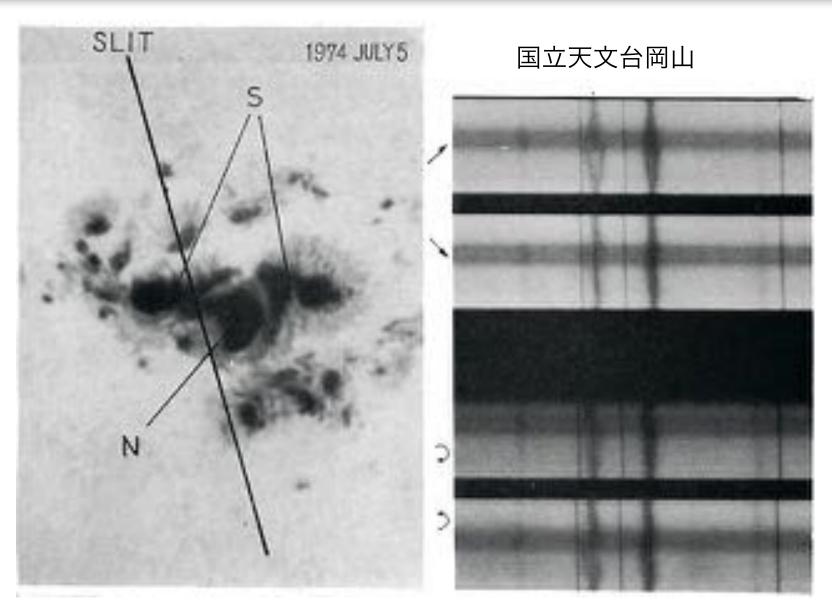

- スペースからの太陽観測
 - 地上からは見えない波長 (X線、紫外線)で コロナを観測
 - 大気に邪魔されず精度のよい観測ができる
 - 24時間連続観測、太陽の常時監視
- 可視光望遠鏡 (SOT)
 - 口径50cmの回折限界性能を持つ世界最大、 最高性能の太陽観測用宇宙望遠鏡



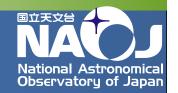


詳しい観測ができる唯一の星


- 空間分解できる
- 太陽の周囲には数100万度という高温のプラズマ
 - 電子と陽子が完全に電離した状態
- 爆発現象(フレア)によって、 超高温(>1000万度)のプラズマ ができる

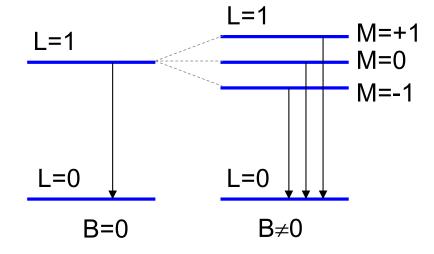


「ひので」衛星による太陽黒点の「顕微鏡」観測 (®NAOJ/JAXA)


ゼーマン効果

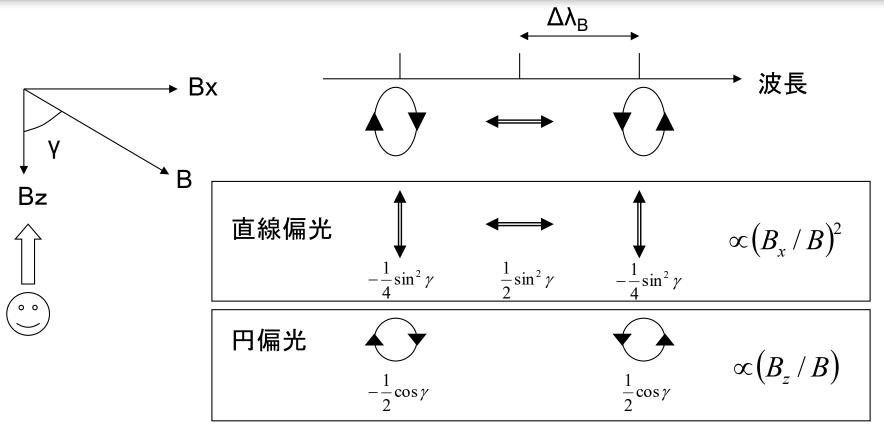
最前線ツアーオンライン

ゼーマン効果

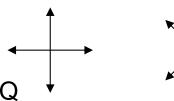

■ 電子の角運動量(磁気モーメント) と磁場の相互作用でエネルギー 準位が分離する

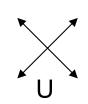
$$\Delta \lambda_B \approx 4.67 \times 10^{-13} \lambda_0^2 gB$$

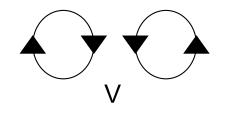
B: 磁場強度(ガウス)

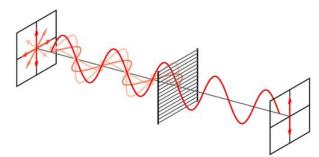

 $\Delta \lambda_{B}$, λ_{O} : Å

g: ランデ因子 g=2.5

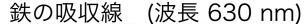


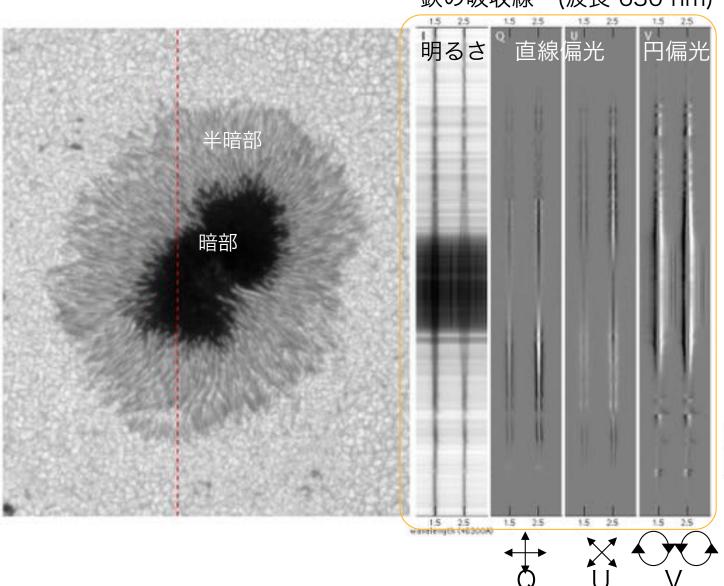

ゼーマン効果と偏光



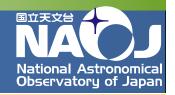


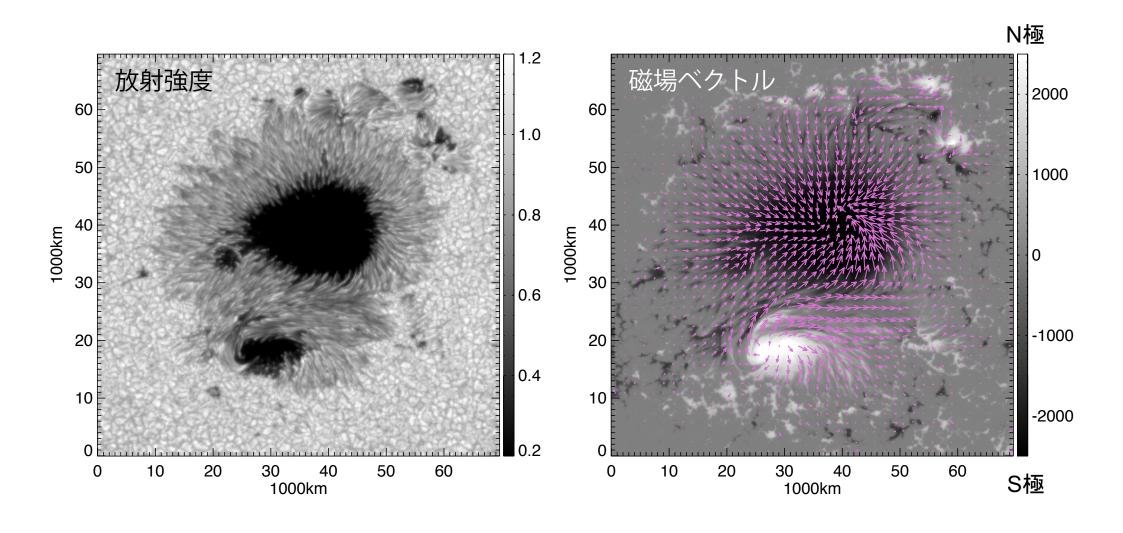
偏光を測定すると、磁場ベクトルの方向までわかる



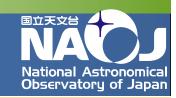


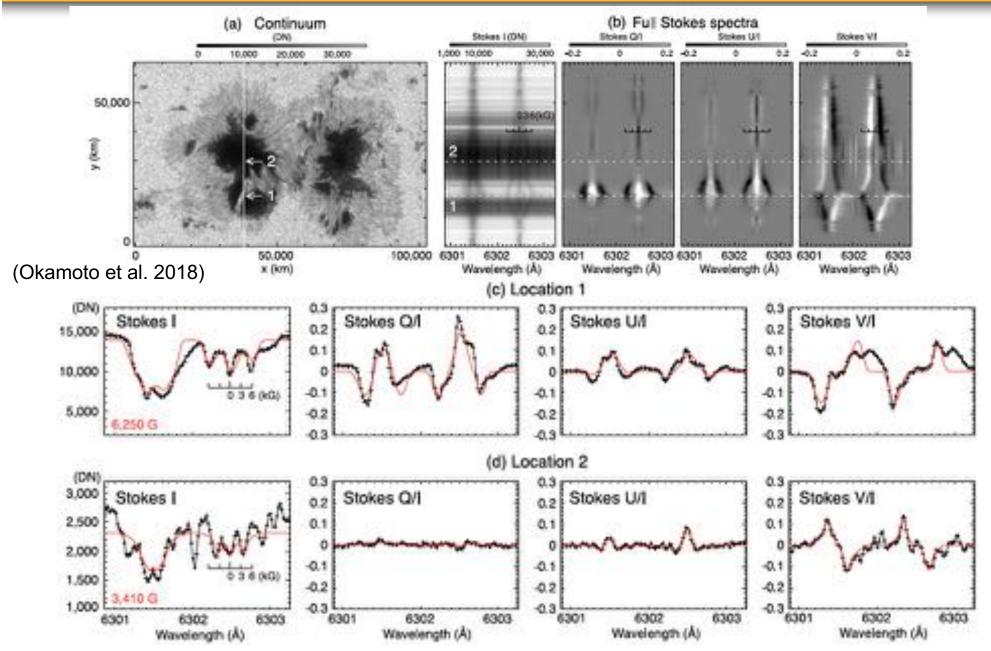
太陽表面の磁場をリモートセンシング

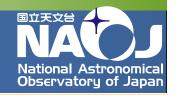




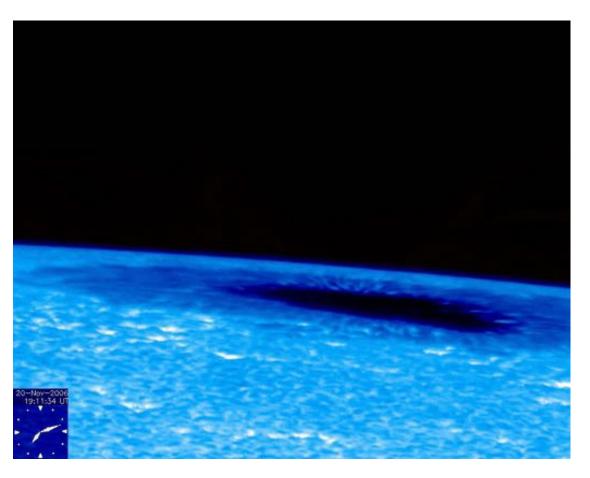
「ゼーマン効果」で発生 する<mark>偏光</mark>を測定

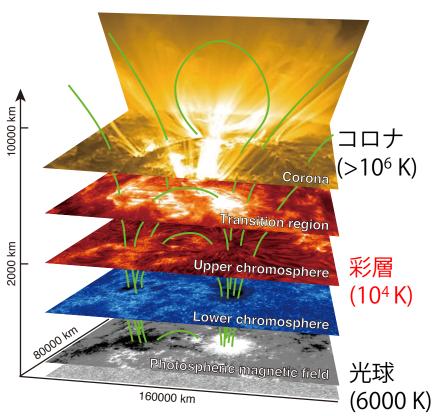

偏光を解析することで、 磁場の向き・強さが分かる。


黒点の磁場「ベクトル」

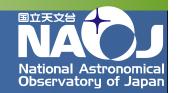


黒点の中の超強磁場

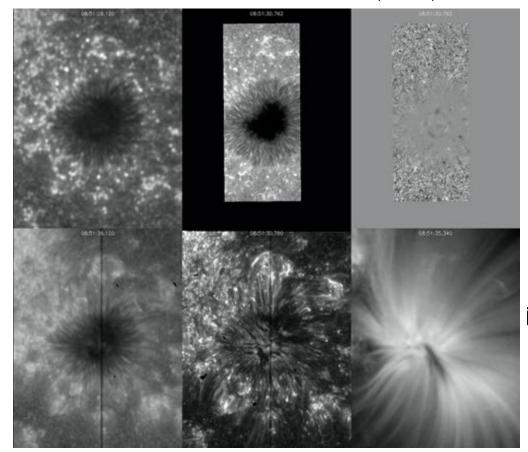




ダイナミックな彩層活動

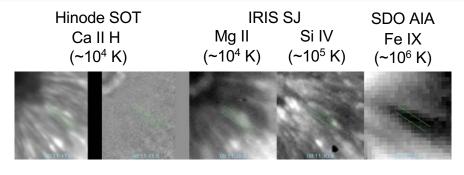


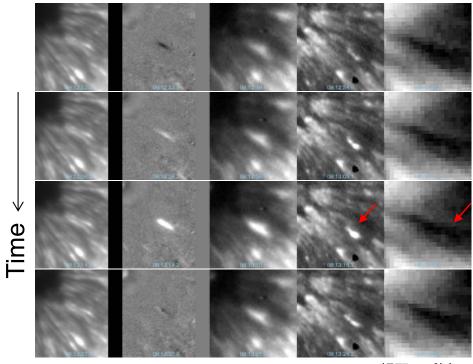
地球を飲み込むほどの高さにまでジェットが数分で到達


多波長観測で迫る彩層・コロナ加熱

可視光彩層観測と紫外線コロナ(105-106 K)観測を組み合わせ、彩層ジェットがコロナにどう影響を及ぼしているのか調べる

SDO AIA 160 nm

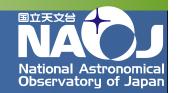

Hinode 彩層観測 (390 nm)

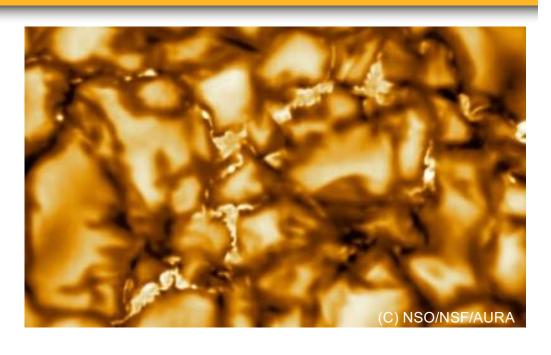


IRIS 280 nm

IRIS 140 nm

SDO 17 nm




視野: 13秒角

SOLAR-Cのターゲット

地上超大型太陽望遠鏡(DKIST)




2021年から口径4mの地上望遠鏡が観測開始

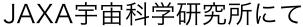
- これまでは最大でも1.6 m
- 高解像度、高感度により、太陽彩層・コロナ磁場の観測
- SOLAR-C衛星との連携観測に期待
- プロポーザル制:日本からの提案(勝川/石川、岡本)も受理されている (年内にデータ手にはいるといいな。。。。)

「ひので」可視光望遠鏡 (SOT)の開発

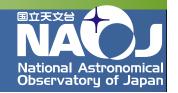
口径50cmの世界最大、 最高性能の太陽観測用 宇宙望遠鏡

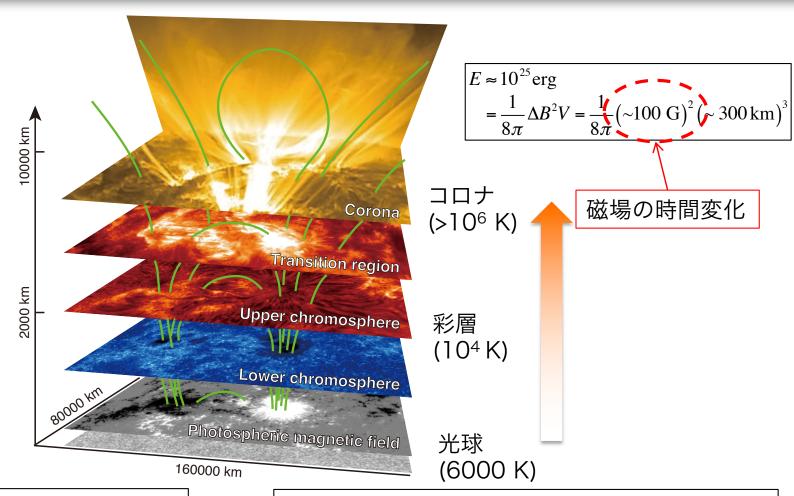
可視光望遠鏡(SOT)の完成を記念して (国立天文台のクリーンルームにて)

打ち上げ・ファーストライト



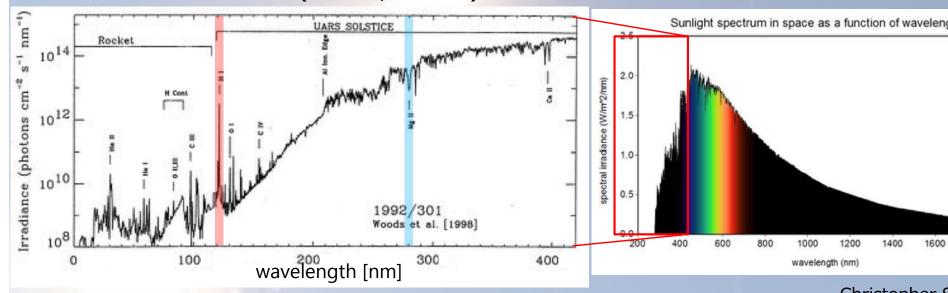
- 2006年9月23日: ISAS M-Vロケット で打ち上げ
- 2006年10月25日: ファーストライト

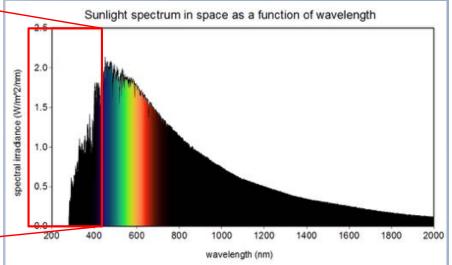




「見えない」磁場を見えるようにしたい

<u>これまでの彩層・コロナ観測</u> 撮像観測による定性的研究

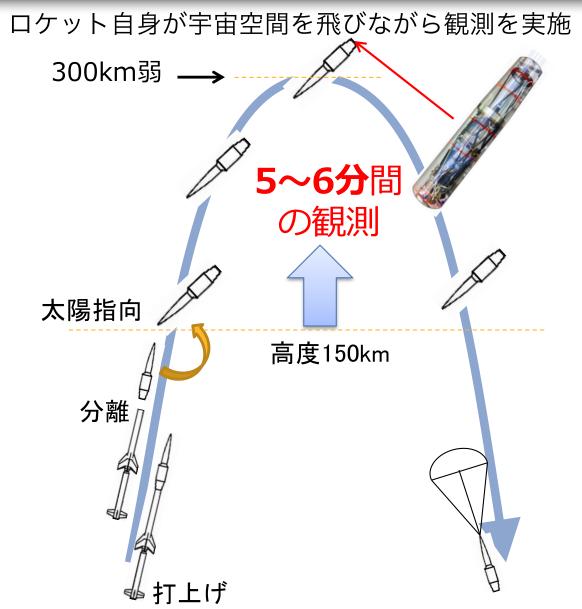

(光球では偏光分光観測がなされた)



<u>これからの彩層・コロナ観測</u> <mark>偏光分光観測</mark>から得られる物理量 (温度、速度、磁場)に基づく定量的研究

太陽観測ロケット実験CLASPシリーズ

- NASAの観測ロケットを用いた日米欧国際協力実験
- 世界初の紫外線の偏光分光観測→コロナ直下の磁場測 定
 - CLASP (2015): ライマンa線 @ 121.6nm
 - CLASP2 (2019, 2021): 電離マグネシウム線 @ 280nm



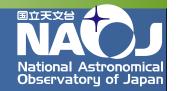
Christopher S. Baird

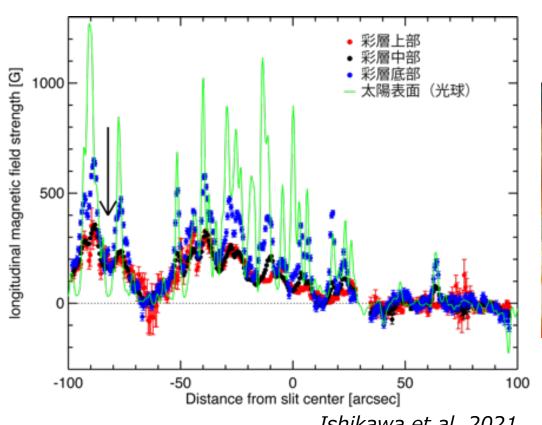
CLASP = Chromospheric Lyman-Alpha SpectroPolarimeter CLASP2 = Chromospheric LAyer SpectroPolarimeter

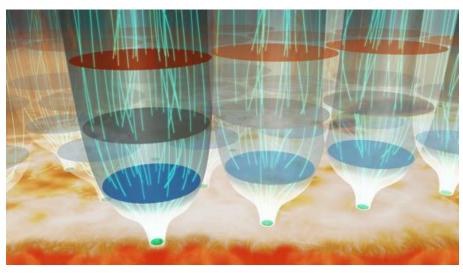
観測ロケット実験?

※気球の到達高度: <50km

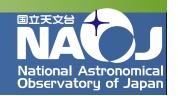
打ち上げ場所: White Sands Missile Range

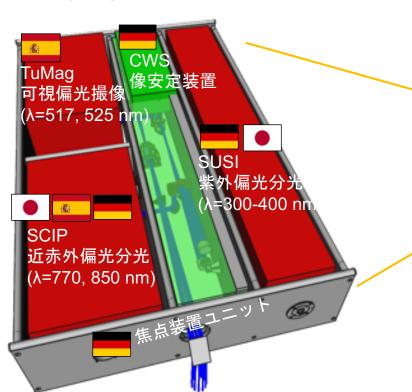





観測装置は砂漠に帰還。再利用が可能!

光球~彩層最上部の連続した磁場測定に成功

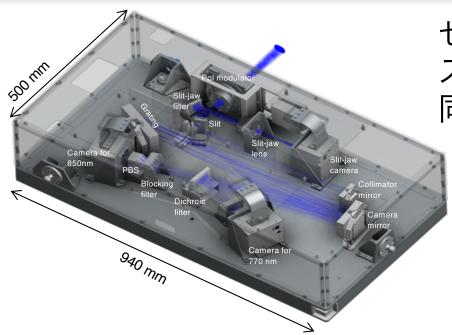



Ishikawa et al. 2021

- 高度が高くなるにつれて磁場が弱くなっている
- 光球で磁場が弱い場所でも彩層では磁場が比較的強い

SUNRISE-3気球実験

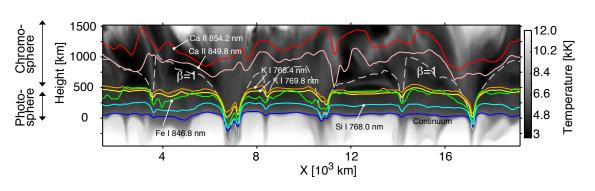
- 口径1m (ひのでの2倍) の光学太陽望遠鏡
 - 2009年と2013年に飛翔実績
- スウェーデン・キルナからカナダまで大西洋上空の 高度約35kmを1週間飛翔
 - 紫外線域 (波長 200 400 nm)の観測
 - シーイングの無い高精度偏光観測
- フライト2022年6月



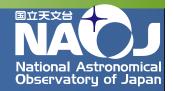
SUNRISE-3 SCIP

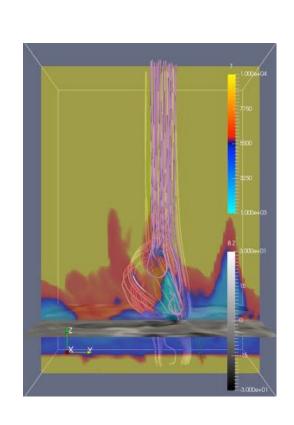
Sunrise Chromospheric Infrared spectroPolarimeter

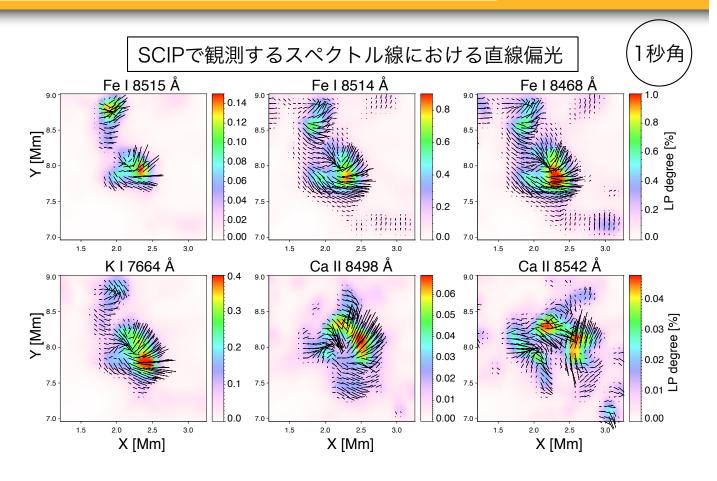
Mg I Mg I Fe I K I ΚI Fe I Ni I 772 765 766 767 768 769 770 771 Fe I Ca II Fe I Fe I Ca II 847 848 850 851 852 853 854 wavelength (nm)


ゼーマン効果 (+ハンレ効果) に高感度なスペクトル線がある近赤外線2波長帯を同時に偏光分光

■ 高空間 · 時間分解能


- 「ひので」と同じ解像度: 0.21秒角 (850 nm、Φ1mの回折限界)
- 時間分解能: 15秒
- 分散: 2x10⁵


■高精度偏光観測


- Ca II 線で~5 Gの磁場を測定: 0.03%(1σ)の偏光 度測定

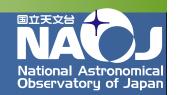
ジェットを駆動する磁場構造が見えるか

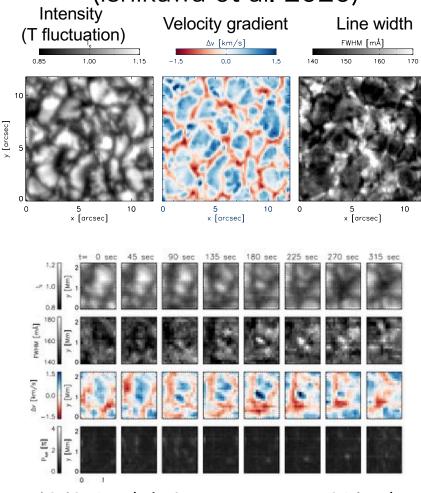

■ 彩層ジェットを駆動する磁場・運動の偏光分光信号を検出する

SCIPの開発 @ NAOJ

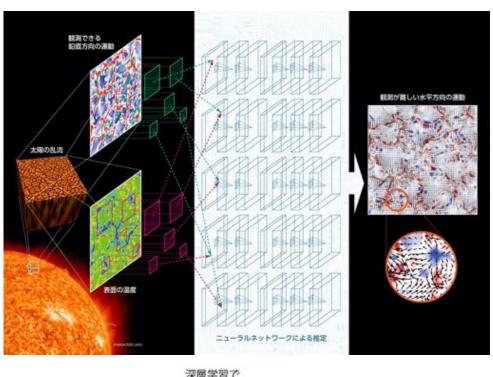
最前線ツアーオンライン

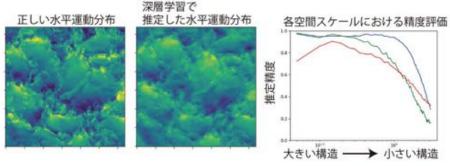
ドイツでの試験完了、キルナへ

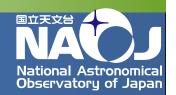



最前線ツアーオンライン

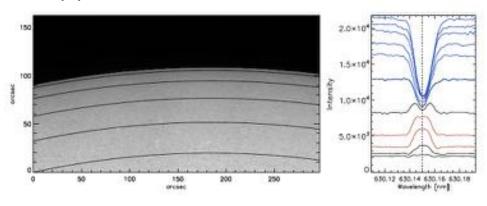
学生さんの研究

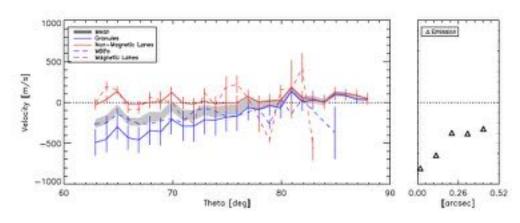

D3石川さんの研究


ひので偏光分光観測を使った研究 (Ishikawa et al. 2020)


粒状斑が消失するときに乱流が 増大することを発見

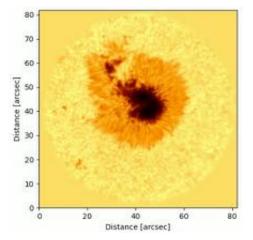
深層学習を使った物理量導出 (Ishikawa et al. 2022)

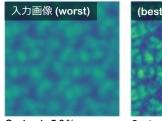


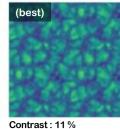

学生さんの研究

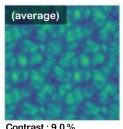
M2森塚さんの研究

ひので偏光分光観測を使って太陽リムの Doppler shiftを調べる

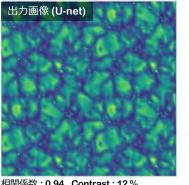


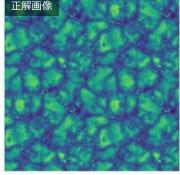



恒星表面の対流でドップラー速度が変わる → 恒星の精密分光観測への応用


M1福満さんの研究

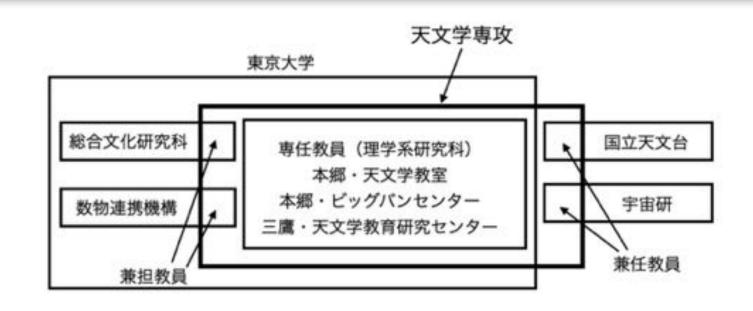
深層学習を使って シーイング除去 画像復元





Contrast: 5.8 %

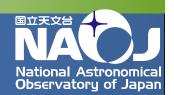
Contrast: 9.0 %



相関係数: 0.94. Contrast: 12%

Contrast: 13 %

東京大学・天文学専攻



- 講義は大学(本郷)で (ここ2年はオンライン)
- 研究は、各指導教員のいる拠点で
- 天文学の幅広い講義を受講できる
- R5年度入試ガイダンス: 2022年6月4日(土)予定

詳しくはhttp://www.astron.s.u-tokyo.ac.jp/admission/graduate/

東京大学・天文学専攻

理論

フルーフ A				~ HIII
教員名		所属	研究分野	研究テーマ
戸谷	友則	天文学教室	理論天体物理学	宇宙論。銀河形成進化、及び高エネルギー天体現象の研究
相川	祐理	天文学教室	理論天体物理学	星·惑星系形成,星間化学
梅田	秀之	天文学教室	理論天体物理学	恒星進化、超新星、ガンマ線パースト、初代天体と元素合成
蘇井	道子	天文学教室	理論天体物理学	星団・銀河・惑星系の形成・進化の理論的研究, シミュレーション 手法の開発
茂山	俊和	ピッグパン	理論天体物理学	爆発的天体現象におけるガスの運動論・輻射輸送。銀河の進化
鈴木	雄	総合文化	理論天体物理学	宇宙天体プラズマ物理学、特に天体風駆動理論と天文学への応用
小久包	采英一郎	国立天文台	理論天体物理学	感星系形成論, 太陽系, 系外感星系
中村	文隆	国立天文台	理論天体物理学	星・惑星系形成過程の観測的および理論的研究

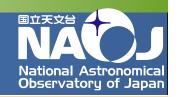
	光赤外観測
	フェファイント住兄 沿川
ゲループR	フロンゴ・フェ ほんかん

教員名		所属	研究分野	研究テーマ
田村	元秀	天文学教室	系外感星天文学	系外惑星天文学・赤外線天文学、観測装置開発
柏川	仲成	天文学教室	銀河天文学	初期宇宙、銀河形成、ブラックホール、構造形成、宇宙再電離、銀 河間物質
邮件	一大	天文学教室	銀河天文学	銀河の形成と進化
土居	d.	天文センター	光赤外線天文学	觀測的宇宙論,超新星, 突発天体, 銀河, 觀測装置開発
宮田	隆志	天文センター	赤外線天文学	熱赤外線天文学:機器開発と時間変動を用いたダストの研究
小林	尚人	天文センター	天体物理学	屋・屋団および銀河系の形成進化、光学赤外高分散分光
終終	岳夫	天文センター	赤外線天文学 · 銀河天文学	銀河天文学・観測的宇宙論, 観測装置開発
酒向	重行	天文センター	光赤外線天文学	時間軸天文学,光赤外線装置開発, 星・惑星形成論
高温	提高	国立天文台	赤外線天文学	太陽系形成進化の観測的研究。及び光率外線観測装置開発
本原顕	太郎	国立天文台	赤外線天文学	銀河形成進化。赤外線天文学、観測装置開発
SILVERMAN , John		数物連携機構	銀河天文学	Evolution of galaxies and supermassive black holes

電波観測

グループ C				
人名	所属	研究分野	研究テーマ	
大郎	天文センター	電波天文学	銀河・銀河団の形成と進化の研究、ミリ波サブミリ波観測機器開発	
成一	国立天文台	電波天文学	ミリ波サブミリ波観測による星間物理学	
美里	国立天文台	電波天文学	系外惑星天文学、電波・赤外線天文学	
希樹	国立天文台	電波天文学	超長基線電波干渉計を用いた電波天文学	
武志	国立天文台	電波天文学	近傍銀河の観測的研究。観測装置開発	
	人 大郎 成一 美里 希樹		- プ C	

グループ D 教員名	所属	研究分野	:、里刀液 ^{研究テーマ}
鹿野 良平	国立天文台	天体物理学	位置天文観測衛星計画の推進と装置開発,太陽・恒星物理学
都丸 隆行	国立天文台	重力波天文学	重力波天文学 (実験)
勝川 行雄	国立天文台	太陽物理学	太陽・恒星磁気活動の観測的研究。次世代観測装置の開発
海老沢 研	宇宙研	X 線天文学	主に X 線天文衛星を用いた高密度天体や天の川の観測的研究。科 学衛星データアーカイブシステム開発、地上システム開発
関本裕太郎	宇宙研	実験宇宙物理学	宇宙マイクロ波背景放射実験、ミリ波観測装置の開発研究


手十油

衛星搭載赤外線望遠鏡による観測技術の開発

烘 田

注: R4年度入学案内から R5年度は変更されます

学部生向けの体験企画

- 総研大では学部生(主に2-3年生)を対象に最先端の天文 学研究に触れられる企画をおこなっています。
- 総研大スプリングスクール
 - 国立天文台の研究者による天文学の基礎の集中講義を行う
 - 2-3月に1週間、50名ほど
- 総研大サマーステューデント
 - 国立天文台に滞在し、研究者の指導で、実際の研究を行う
 - 8月に2-4週間、最後に発表会
 - 面白い成果がでたときに、天文学会で発表してもらったことも あります